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The field of mechatronics primarily concerns the integration of mechanics and electronics.
(e.g., mechanical, fluid, thermal and electrical/electronic systems)

Control

] Systems
They can serve functions of
» Structural support g o control
» Load bearing
ey Electronic
> MOblhty Systems

» Transmission of motion and energy

> Actuation < @ . mEeff;:atC)Oi-cs
» Manipulation A v
. X Mechanical
> Sensmg W\’wx Systems
» Control 7

https://enwikipedia.org/wiki/Mechatronics
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Electrical > Load
Subsystem Fﬁxed) \
—
Source > Mechanical
(fixed) Subsystem
| — M ¢ chap o4 @1:7/%@6{/\ ‘

“* Energy (or Power)

¢ Bandwidth (e.g., Speed and Time Constant)
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Required and needed in this course:
» Mechanical Components v/
» Electrical Elements \/

Should understand:

(o e
> Thermal Hlements—
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Through Variable: Remains U&}M hrough Element (e.g., Force, Current, Heat—

Transfer Rate, Fluid Flow Rate)
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Mass Spring Damper
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PtV )
Constitutive Equation (Newton’s 2" Law): é m
dv 7
: v
where 7 = mass(inertia) P= f-V= W T 4
Power = fv = rate of change of energy =» s=P-dt "
dv ﬂ/;v e =
E=|fvdt=| m—uvdt = | mvdv E=3mlV
dt T~
J
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=> Energy E = Emvz (Kinetic Energy) =2 Energy storage element _@M\
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» An inertia is an energy storage element (kinetic energy).

» Velocity (across variable) represents the state of an inertia element =2 “A-Type

Element”
Note: 1. Velocity at any #is completely determined from initial velocity and the applied force; 2. Energy of

inertia element is represented by » along.

» Hence, » is a natural output (or response) vatiable for an inertia element, which can
represent its dynamic state (i.e., state variable), and fis a natural input variable for an
4_%_%( gf)ﬂ% VMOJM — /L//é Mr(@( %W

4
cole tt V'womte yarisl a2
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» Velocity across an inertia element cannot change instantaneously unless an infinite force

inertia element.

is applied to it.
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velocity (as for mnertia element)

Eszvdtsz%df

e ?
2 h vary
=> Energy E = %% (Elastic potential energy) 3(—‘ h el

g —

=> Energy storage element 4 o \ /\j’ - T? pe clewen t
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> A spring (stiffness element) is an energy storage element (elastic potential energy).

» Force (through variable) represents state of spring element =2 “T-Type Element”.

Note: 1. Spring force of a spring at time #1s completely determined from initial force and applied velocity; 2.
Spring energy is represented by falone.

> Force fis a natural output (response) variable. and » is a natural input variable for a
p p > i % p

stiffncss element. |, §totké - paces M
(¢ .
Ohwose g 24 tote . & P,

» Force through a stiffness element cannot change instantaneously unless an infinite

velocity 1s applied to it.
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Mechanical Element: Damping (Dissipation)

v = " N

Damping (Dissipation) Element (D-Type Element)
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Constitutive Equation: f\w
where /=damping constant (damping coetficient); for viscous damping

The power dissipated depending on the velocity »:

P = bv?

M



Observations: Damping (Dissipation)

» Mechanical damper is an energy dissipating element (D-Type Element).

Page 13 of 33

» Either force for velocity » may represent its state. ,r,’f i X
gfte y I
» No new state variable is defined by this element. ;
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u elen™ g lerms”
Capacitor /&,1&\?5 elev Inductor )y T /ﬂjpe Resistor P/ng
/
(a) ; C (b) L (c) ; R
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Voltagt v
Sources: Voltage and current - (0 j

Variables: [Voltage (across variable) and current (through variable)
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Variables: Voltage (across variable) and the current (through variable)

Capacitor Element (A-Type Element) £ = ;
u\/\/_/v\_/\./ - ,
. A%

O
%%W =1 -
where C = capacitance
Power = v = Energy E = [ivdt = [ C—vdt =
——
Energy £ = - C v? (electrostatic energy) = E‘;ILleergy storage element
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Observations: Capacitor Page 17 of 33

» Voltage (across variable) is state variable for a capacitor =2 “A-Type Element”.

> Voltage is a natural output variable and current is a natural input variable for a capacitor.

» Voltage across a capacitor cannot change instantaneously unless an infinite current is

applied.
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Inductor Element (T-Type Element)

(b) L
. I
. . . di
Constitutive Equation: L — = o> (YT o
dt -

CNAN——— T T N\
where I. = inductance
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EnergyE=5Li2 (Electromagnetic energy) g e - /
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Observations: Inductor Page 19 of 33

» Current (through variable) is state variable for an inductor = “T-Type Element”.

> Current is a natural output variable and voltage is a natural input variable for an
inductor.

» Current through an inductor cannot change instantaneously unless an infinite voltage is

applied.
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Resistor Element (D-Type Element)

(c) ; R
Constitutive Equation: v = Ri (Ohm’s law) o>—A\\N\——o
where R = resistance T . -«
Wt Z/M v

Observations: D- 4l e
1. 'This 1s an energy dissipating element (D-Type Element)
e

2. Either 7 or » may represent the state

3. No new state variable is defined by this element.
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Components | Constitutive Energy Stored or
Equation Power Dissipated
Capacitor _ dv E=21cp?
i =C—
dt :
Inductor di F =212
V=L— 2
dt
. _ 2
Resistor v = IR p— % or P = I2R

Note:

" Voltage is a natural output variable and current 1s a natural input variable for a capacitor.

= Current 1s a natural output variable; voltage 1s a natural input variable and voltage is a
natural state variable for an inductor.
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System Type Mechanical Electrical
System-Variables:

Through-Variables Force f Current /
Across- Variables  Velocity » Voltage v
System m V"\Wé C
Parameters k< ngﬁ 1/1.

b @M 1/R
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Variables: Across variable temperature (1) and through variable heat transfer rate (Q).

Thermal Capadtor (A-Type Element)

Consider control volume 1 of fluid with, density p, and specific heat c.
dT

Constitutive Equation: Net heat transfer rate into the control volume ¢ =PV¢ o €
dT
C—= Hea emperature
Z dt Traxisfer ! 11])' t

C, = pve = thermal capacitance of control volume R L
Observations:
Temperature T is state variable for thermal capacitor (from usual argument) €
“A-Type Element”

Heat transfer rate {J 1s natural input and temperature T is natural output for this element
This 1s a storage element (stores thermal energy)

Nofe There is no thermal “inductor” like storage element with state variable O .



Thermal Elements (cont’d) Page 24 of 33

Thermal Resistance (D-Type Element)
Three basic processes of heat transfer € three different types of thermal resistance

Constitutive Relations

kA

Conduction: 9= . T

#/ = conductivity; A4 = area of cross section of the heat conduction element; Ax = length of heat

conduction that has a temperature drop of T.

. ) . Ax
e Conductive resistance R; = T

Convection: QO =h AT
h, = convection heat transfer coefficient; .4 = area of heat convection surface with temperature drop

T

1

e Conductive resistance Bc = w,

Radiation: Q=c6F,F, AT -T;) & a nonlinear thermal resistor

o = Stefan-Boltzman constant

F,. = effective emmisivity of the radiation source (of temperature 7))
F , = shape factor of the radiation receiver (of temperature 1)

A = effective surface area of the receiver.
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Variables: Pressure (across variable) P and volume flow rate (through variable) O

Fluid Capacitor (A-Type Element) (a)

X (b) X0 —» X
. . . dP Py «—
Constitutive Equation: ¢, —=0
. dt . ' | P> | P, Py
Note 1: Stores potential energy (a “fluid spring”) e, Q A
Note 2: Pressure (across variable) 1s state variable . 1 ) e
for fluid capacitor € “A-Type Element” | I -
P=P-P

Three Types: Fluid compression; Flexible container; Gravity head

1a. For liquid control volume 17 of bulk modulus f: G =%

1b. For isothermal (constant temperature, slow-process) gas of volume |~ and pressure:

v
Coopy = —
comp P
. . V
1. For adiabatic (zero heat transfer, fast-process) gas:  Ceomr =5
Py 4
. )
_ b . . —
k = - = ratio of specific heats at constant pressure and constant volume =

v

2. For incompressible fluid in a flexible vessel of area .4 and stiffness & Cetasic =~

Note: For a fluid with bulk modulus, the equivalent capacitance = Cpu + Coasiic .

3. For incompressible fluid column of area of cross-section .4 and density p: Cow =
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Fluid Inertor (T-Type Element) P P

dQ
Constitutive Equation: {/ 5 P

Note 1: Volume flow rate O (through variable) is state variable for fluid inertor
“T-type Element”

Note 2: It stores kinetic energy, unlike the mechanical 7-type element (spring), which do

stores potential energy.

With uniform velocity distribution across A4 over length segment Ax:

. q e Ax
Fluid inertance I, = P

For a non-uniform velocity distribution:
.y Ax :
Fluid inertance /, =ap—- (correction factor @)

For a pipe of circular cross-section with a parabolic velocity distribution, o = 2.0
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Fluid Resistor (D-Type Element)

P P

Constitutive Equation (Linear):  P=R,0
P=R,Q
Constitutive Equation (Nonlinear): £ = K, Q"
(K and 7 are parameters of nonlinearity)

For Viscous Flow Through a Uniform Pipe:

: : . , B Ax
(a) With circular cross-section of diameter 4 £y =128 1t Ty

. . . . Ax
(b) With rectangular cross-section of height b << width »: R, =12u e

Note: 1 = absolute viscosity (or, dynamic viscosity); U = kinematic viscosity
with 1 =Vvp



Analogies and Constitutive Relations

System Type

Constitutive Relation for

S

Energy Storage Elements

A-Type \
(Across) Element

Energy Dissipating Elements

T-Type
(Through) Element

D-Type f
O

issipative) Element

Translatory- Mass Spring Viscous Damper

Mechanical (Newton’s 2nd ] (Hooke’s Law) b = damping constant

v = velocity Law) k = stiffness

f = force 72 = mass

Electrical Capacitor nductor Resistor

v = voltage C = capacitance = inductance R = resistance

. = current

Thermal Thermal Capacitor | lNone Thermal Resistor

T = temperature C, = thermal R, = thermal resistance

difference |capacitance

O = heat transfer rate

Fluid Fluid Capacitor |/Fluid Inertor luid Resistor

P = pressure ¢ = fluid { I;= inertance = fluid resistance
difference capacitance

| O = volume flow rate k\__/ =, _J

oleywments

Page 28 of 33
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System Type Through Variable Across Variable

Electrical

Mechanical
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Suspension of a car

Kw
Road surface

Tr(t)
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Electrical Circuit

+ K,
A - R,
J2(A)
T
n R C, v+\
(V) C, —= L /%(V)




Building Up Mechatronic Systems Page 32 of 33

DC Motor (will discuss it in detail in later chapter)

ia(t) Ra  La wm () P
—W O () SIS
eaf() eb(t)‘ > I T DTL@
Input T () |777ﬁ Bm
A\ ~ J \_ ~ )

Armature circuit Mechanical load



T'he End!!



