

General Robotics & Autonomous Systems and Processes

Mechatronic Modeling and Design with Applications in Robotics

Basic Model Elements

The field of mechatronics primarily concerns the integration of mechanics and electronics. (e.g., mechanical, fluid, thermal and electrical/electronic systems)

They can serve functions of

- Structural support
- \blacktriangleright Load bearing
- ► Mobility
- \blacktriangleright Transmission of motion and energy Smant de vice.
- \blacktriangleright Actuation
- ► Manipulation
- ➢ Sensing
- ➢ Control

Electromechanical System

Distinction Between Mechanical and Electronic Components

Page 4 of 33

Energy (or Power)

Bandwidth (e.g., Speed and Time Constant)

Basic Electrical Components

Required and needed in this course:

- \blacktriangleright Mechanical Components \checkmark
- Electrical Elements

Should understand:

Reference.

Mechanical Elements

Mechanical Element: Mass (Inertia)

- An inertia is an energy storage element (kinetic energy).

Note: 1. Velocity at any *t* is completely determined from initial velocity and the applied force; 2. Energy of inertia element is represented by *v* along.

- Hence, v is a natural output (or response) variable for an inertia element, which can represent its dynamic state (i.e., state variable), and f is a natural input variable for an inertia element. $\begin{aligned}
 & fate - space \quad model \cdot \rightarrow \quad Mechanical \quad system \\
 & Select \quad v'' \rightarrow State \quad Variable \quad of a mass
 \end{aligned}$
- Velocity across an inertia element cannot change instantaneously unless an infinite force is applied to it.

Mechanical Element: Spring (Stiffness)

- A spring (stiffness element) is an energy storage element (elastic potential energy).
- Force (through variable) represents state of spring element \rightarrow "T-Type Element". Note: 1. Spring force of a spring at time *t* is completely determined from initial force and applied velocity; 2. Spring energy is represented by *f* alone.
- Force f is a natural output (response) variable, and v is a natural input variable for a stiffness element.
 State space Model.
 Woose 'f as State. of spring.
- Force through a stiffness element cannot change instantaneously unless an infinite velocity is applied to it.

Mechanical Element: Damping (Dissipation)

It dosen't store energy.

Constitutive Equation: f = bv

where *b*=damping constant (damping coefficient); for viscous damping

The power dissipated depending on the velocity *v*:

$$P = bv^2$$

Observations: Damping (Dissipation)

- \blacktriangleright Mechanical damper is an energy dissipating element (D-Type Element). T-TYPE: Force Lource A-TYPE, Velocity,
- \blacktriangleright Either force f or velocity v may represent its state.
- \blacktriangleright No new state variable is defined by this element.

ble is defined by this element. T - T q p e A - T q p e D - T q p e f: Through Variable V: Aeross Variable

Rotational Elements

Electrical Elements

Page 15 of 33

Variables: Voltage (across variable) and the current (through variable)

 \blacktriangleright Voltage (across variable) is state variable for a capacitor \rightarrow "A-Type Element".

> Voltage is a natural output variable and current is a natural input variable for a capacitor.

Voltage across a capacitor cannot change instantaneously unless an infinite current is applied.

Electrical Element: Inductor

Page 18 of 33

 \blacktriangleright Current (through variable) is state variable for an inductor \rightarrow "T-Type Element".

Current is a natural output variable and voltage is a natural input variable for an inductor.

Current through an inductor cannot change instantaneously unless an infinite voltage is applied.

Page 20 of 33

Resistor Element (D-Type Element)

- 2. Either i or v may represent the state
- 3. No new state variable is defined by this element.

Components	Constitutive Equation	Energy Stored or Power Dissipated
Capacitor	$i = C \frac{dv}{dt}$	$E = \frac{1}{2}Cv^2$
Inductor	$v = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$
Resistor	v = iR	$P = \frac{v^2}{R}$ or $P = I^2 R$

Note:

- Voltage is a natural output variable and current is a natural input variable for a capacitor.
- Current is a natural output variable; voltage is a natural input variable and voltage is a natural state variable for an inductor.

groups	(
ategories	2
CU ²	

System Type System-Variables:	Mechanical	Electrical	
Through-Variables	Force f	Current i	
Across- Variables	Velocity v	Voltage v	
System Parameters	b I Jamper	C 1/L 1/R	· ml
	Mechatronic Syl	orms & Mechan TElectri Thro Deros	cal ugh Z => Similarity

Variables: Across variable temperature (T) and through variable heat transfer rate (Q).

Thermal Capacitor (A-Type Element)

Consider control volume V of fluid with, density ρ , and specific heat *c*.

Constitutive Equation: Net heat transfer rate into the control volume $Q = \rho V c \frac{dT}{dt}$ **è**

 $C_t = \rho vc$ = thermal capacitance of control volume

 $C_t \frac{dT}{dt} = Q$

Observations:

Temperature T is state variable for thermal capacitor (from usual argument) **è** "**A-Type Element**"

Heat transfer rate Q is natural input and temperature T is natural output for this element This is a storage element (stores thermal energy)

Note There is no thermal "inductor" like storage element with state variable Q.

Thermal Elements (cont'd)

Thermal Resistance (D-Type Element)

Three basic processes of heat transfer **è** three different types of thermal resistance

Constitutive Relations

Conduction: $Q = \frac{kA}{\Delta x}T$

k = conductivity; A = area of cross section of the heat conduction element; Δx = length of heat conduction that has a temperature drop of T.

è Conductive resistance
$$R_k = \frac{\Delta x}{kA}$$

Convection: $Q = h_c AT$ $h_c =$ convection heat transfer coefficient; A = area of heat convection surface with temperature drop T

è Conductive resistance
$$R_c = \frac{1}{h_c A}$$

Radiation: $Q = \sigma F_E F_A A (T_1^4 - T_2^4)$ **è** a nonlinear thermal resistor

 σ = Stefan-Boltzman constant

 F_E = effective emmisivity of the radiation source (of temperature T_t)

- F_{A} = shape factor of the radiation receiver (of temperature T_{2})
- A = effective surface area of the receiver.

Fluid Elements

Variables: Pressure (across variable) P and volume flow rate (through variable) Q

Fluid Capacitor (A-Type Element) Constitutive Equation: $C_f \frac{dP}{dt} = Q$ Note 1: Stores potential energy (a "fluid spring")

Note 2: Pressure (across variable) is state variable for fluid capacitor **è** "A-Type Element"

 $P=P_1-P_2$

Three Types: Fluid compression; Flexible container; Gravity head 1a. For liquid control volume *V* of bulk modulus β : $C_{bulk} = \frac{V}{B}$

1b. For isothermal (constant temperature, slow-process) gas of volume V and pressure: $C_{comp} = \frac{V}{P}$

1. For adiabatic (zero heat transfer, fast-process) gas: $C_{comp} = \frac{V}{kP}$

 $k = \frac{c_p}{c_v}$ = ratio of specific heats at constant pressure and constant volume

2. For incompressible fluid in a flexible vessel of area A and stiffness k: $C_{elastic} = \frac{A^2}{k}$ **Note:** For a fluid with bulk modulus, the equivalent capacitance $= C_{bulk} + C_{elastic}$. 3. For incompressible fluid column of area of cross-section A and density ρ : $C_{grav} = \frac{A}{\rho g}$

(c)

Fluid Elements (cont'd)

Constitutive Equation:
$$I_f \frac{dQ}{dt} = P$$

Note 1: Volume flow rate Q (through variable) is state variable for fluid inertor è "T-type Element"
Note 2: It stores kinetic energy, unlike the mechanical *T*-type element (spring), which stores potential energy.

With uniform velocity distribution across *A* over length segment Δx :

Fluid inertance $I_f = \rho \frac{\Delta x}{A}$

For a non-uniform velocity distribution:

Fluid inertance $I_f = \alpha \rho \frac{\Delta x}{A}$ (correction factor α)

For a pipe of circular cross-section with a parabolic velocity distribution, $\alpha = 2.0$

$$P_2 \qquad P_1$$

$$\rightarrow Q$$

$$P = I_f \frac{dQ}{dt}$$

Fluid Elements

Page 27 of 33

Fluid Resistor (D-Type Element)

Constitutive Equation (Linear): $P = R_f Q$

 $Q \rightarrow P_1$

 $P = R_f Q$

Constitutive Equation (Nonlinear): $P = K_R Q^n$ (K_R and *n* are parameters of nonlinearity)

For Viscous Flow Through a Uniform Pipe:

(a) With circular cross-section of diameter *d*: $R_f = 128 \ \mu \frac{\Delta x}{\pi d^4}$

(b) With rectangular cross-section of height $b \ll width w$: $R_f = 12\mu \frac{\Delta x}{wb^3}$

Note: μ = absolute viscosity (or, dynamic viscosity); ν = kinematic viscosity with $\mu = \nu \rho$

Analogies and Constitutive Relations

		Constitutive Relation for			
	System Type	Energy Storage Elements		Energy Dissipating Elements	
		A-Type (Across) Element	T-Type (Through) Element	D-Type (Dissipative) Element	
ſ	Translatory- Mechanical v = velocity f = force	Mass (Newton's 2^{nd} Law) m = mass	Spring (Hooke's Law) <i>k</i> = stiffness	Viscous Damper <i>b</i> = damping constant	
2	Electrical v = voltage i = current	Capacitor C = capacitance	Inductor L = inductance	Resistor R = resistance	
2	Thermal T = temperature difference Q = heat transfer rate	Thermal Capacitor C_t = thermal capacitance	None	Thermal Resistor R_t = thermal resistance	
4	Fluid P = pressure difference Q = volume flow rate		Fluid Inertor I_f = inertance	Fluid Resistor $R_f =$ fluid resistance	

elements

Sy	vstem Type	Through Variable	Across Variable
- H	ydraulic/Pneumatic	Flow Rate	Pressure
E	lectrical	Current	Voltage
M	echanical	Force	Velocity
	hermal	Heat Transfer	Temperature

Building Up Mechanical Systems

Page 30 of 33

Suspension of a car

Building Up Electrical Systems

Electrical Circuit

Building Up Mechatronic Systems

Page 32 of 33

DC Motor (will discuss it in detail in later chapter)

The End!!